
Automating Test of Control Software
Method for Automatic Test Generation
Daimler uses a model-based test process for the development of software modules for automatic transmissions.
The validation of the module functions is carried out with a test generator developed by QTronic. This test genera-
tor is able to automatically generate, simulate and analyze thousands of test scenarios. The individual components
of the development environment, such as, powertrain and vehicle models, software modules and test generator,
are coupled by a Software-in-the-Loop (SiL) tool and can be executed on standard laptops. The software modules
are operating as in a real vehicle and can be thoroughly tested.

DEVELopMEnT procESSES

ATZelektronik 06I2009 Volume 424

Software Test

1 Introduction

The complexity of vehicle engine and
transmission systems is steadily increas-
ing. One of the reasons is the increasing
market expectation with respect to the
engine and transmission efficiency, agili-
ty, driving pleasure and emissions. This
multitude of market demands can only
be achieved by combining robust me-
chanics with intelligent software. An ex-
ample for this development is the MCT
7-speed sports transmission, where a
compact, wet start-up clutch replaced the
conventional torque converter [1]. For
controlling the start-up clutch new soft-
ware modules had to be developed and
integrated into the existing software of
the 7G-Tronic transmission. In addition
to the already existing test procedures,
such as Hardware-in-the-Loop (HiL) tests,
test bench investigations, and road trials
with physical prototypes, a new method
based on automatic test generation was
used for the test and validation of the
software modules. This new method al-
lowed for significantly improved test cov-
erage and testing efficiency. The goal of
this automation is a comprehensive sys-
tem test, maximizing the relevant system
states that are reached and tested.

2 The Environment for
Model-based Software Test

The method explained here is used for
testing complex software modules. Such
modules can be tested only in closed-loop
interaction with the controlled physical
subsystem due to the feedback interac-
tion of the software functions with the
dynamics of the physical subsystem. For
this purpose we use a testing environ-
ment that allows coupling the vehicle
simulation with the software modules
that are to be tested. As a test generator
we use TestWeaver, a tool developed by
QTronic. During the design process the
test method is repeatedly used for find-
ing faults and weaknesses of the software
functions as early as possible.

2.1 The Test Method Workflow
As a first step, the test environment has
to be setup. The plant simulation model
has to be developed and the tester has to
be configured. For this, one needs to

identify which variables should be con-
trolled by the test generator during the
test (such as, acceleration pedal, braking
pedal, road inclination, etc.). One also
needs to define the criteria that are used
to assess the system behaviour as good or
bad. Furthermore, project-specific tem-
plates used for reporting the test out-
come are created. The software version
under test is compiled for the SiL target
(DLL) and the co-simulation tool is con-
figured. Now, the test generator can be
started. The test tool automatically gen-
erates, simulates and evaluates thou-
sands of differing test scenarios in a reac-
tive way and reports the states and the
problems reached by the system during
the test. Afterwards, the test results are
revised by a development engineer. After
fixing the found problems the test is re-
peated in order to ensure the success of
the correction. The configuration of the
test generator can be reused for subse-
quent tests and software versions. This
allows an iterative approach that contin-
uously improves the quality of the soft-
ware functions. Figure 1 shows a summa-
ry of these steps.

2.2 The Plant Model
A central piece of the test environment is
the simulation model of the transmis-
sion, Figure 2. The level of detail and the

The Authors

Dr.-Ing. Anton Rink
is Manager of
Transmission Logic at
Daimler AG in
Stuttgart (Germany).

Dipl.-Ing. Emmanuel
Chrisofakis
is Simulation Engineer
at Daimler AG in
Stuttgart (Germany).

Dr. Mugur Tatar
is Managing Director
of QTronic GmbH in
Berlin (Germany).

Figure 1: The test method workflow

ATZelektronik 06I2009 Volume 4 25

fidelity of this model determines which
software functions of the transmission
control can be tested with which quality
expectations. The complex dynamic be-
haviour of the transmission is described
with the object-oriented modelling lan-
guage Modelica [4]. The model includes
planetary gear trains, shafts, clutches and
brakes, the hydraulic module, oil supply,
and the electronic module. A special at-
tention has been given to the models of
the components that play a major role in
the control of the transmission: the start-
up clutch, internal clutches and brakes
and the hydraulic control. Possible com-
ponent faults, selected based on a risk
analysis, are modelled as well, and can be
activated and deactivated during the simu
lation. Further components of the model
are: engine, cardan shaft, differential,

braking system, street-wheel contact and
car body. The model is calibrated to with-
in 10 % deviation from test bench and ve-
hicle measurements for both static and
dynamic effects. The result is a model for
the longitudinal dynamics of a vehicle
drive that allows the simulation of all
driving and fault scenarios that are rele-
vant for the transmission.

2.3 The Software under Test
Those software modules that require
testing are integrated into the test envi-
ronment as a DLL. Depending on the de-
velopment phase, different description
forms for the software structure, behav-
iour, variables and parameters can be
used. In the application example pre-
sented here a SiL test is described, i.e. the
original C-code of the transmission is in-

tegrated without modification in the test
environment. In order to facilitate the
communication between the software
controller and the simulation model
some low-level functions of the transmis-
sion control unit have been emulated.
The resulting software DLL is executed
with the same cycle rate as in the real
transmission control unit.

2.4 The Simulation Environment
The plant model and the software mod-
ules of the transmission are executed cy-
clically by co-simulation, e.g. every 10 ms.
The modules exchange computed signal
values among themselves at each cycle.
This way, the interaction of the software
and the vehicle hardware can ‘virtually’
be recreated and tested on a PC. Figure 3
shows the structure of the entire test en-
vironment, consisting of: plant model,
software, connection to calibration tool
via XCP, graphical user interface to con-
trol the simulation or, alternatively, con-
nection to test automation. The tools
that are used in vehicle for measurement
and calibration can be used in the SiL en-
vironment as well because the ASAM
standards XCP and A2L are supported by
our simulation environment. For analyz-
ing in detail the C-code execution, a
source-code debugger can be attached to
the simulation process. Also tools meas-
uring the code-coverage can easily be in-
tegrated in the environment.

2.5 Test Generation
and Automated Evaluation
The development tool TestWeaver [2, 3]
facilitates automatic test generation and
evaluation. The test generator autono-
mously generates thousands of differing
control sequences during a test, executes
them via SiL and evaluates the system re-
sponse, Figure 4. The test scenarios are
not randomly created, but based on an
intelligent strategy that heuristically
follows two goals. The first goal is to
maximize the coverage of the relevant
system states. The test generator attempts
to find at least one test scenario for each
relevant system state and then systema
tically investigates these states with all
(or many) differing input combinations.
Which system states TestWeaver should
reach can be specified by the test engi-
neer easily in the test configuration. The
second goal is to find many “bad” or even

Figure 2: The plant model used within the test environment

Figure 3: Co-simulation environment and interactive interface with display

Development Processes

ATZelektronik 06I2009 Volume 426

Software Test

“critical” system states. TestWeaver ac-
tively attempts to “construct” test cases
that worsen the quality of the system be-
haviour. The evaluation criteria indicat-
ing good or bad quality are defined when
configuring the test generator.

3 Application Example: the MCT 7-
Speed Sports Transmission

The transmission control software mod-
ules of the MCT 7-speed sports transmis-
sion [1], where the hydrodynamic torque
converter was replaced by a freely controll
able hydraulic clutch, were developed
with this test method. The original C-code
and the original calibration parameters
of the control software were subject to
the tests. The internal adaptation algo-
rithms of the transmission control soft-
ware were run by a script in the simula-
tion environment to allow the software to
self-tune a large set of adaptable param
eters prior to the tests. This guarantees an
ideal fitting of the software with the
transmission simulation. Only then is it
possible to use sophisticated quality crite-
ria such as shift quality or stress on com-
ponents during the test evaluation. For
checking the on-board monitoring and
diagnosis functions, the plant model con-
tained freely controllable hydraulic and
sensor faults. The test generator was
configured to control the following sig-

nals: starter, acceleration pedal, braking
pedal, gear lever (P-R-N-D), drive program
selector, road inclination, oil tempera-
ture and component faults. A typical test
contained, for instance, 1100 drive ma-
noeuvres of 50 seconds duration. During
the resulting 15 hours of simulation,
235.000 different system states where
reached and classified. Each manoeuvre
was automatically analyzed for problems
in the C-code (e.g. division by 0) and in the
control logic (e.g. wrong fault reaction).
After corrective measures, a renewed test
was started to ensure their positive effect.
Due to the systematic approach of the test
generator, new driving manoeuvres were
simulated that were not contained in pre-
vious test specifications. The high degree
of automation of the software test and the
high level of reuse of the test configura-
tions lead to a significant test coverage
increase combined with a significant
reduction in the effort spent by the devel-
opment engineers when compared to
manual testing methods.

4 Summary

The increasing complexity of software
modules requires an ever-growing effort
for the software test. The presented meth-
od uses a test automaton which generates
thousands of driving maneuvers autono-
mously, executes and evaluates them us-

ing simulation. A fundamental role for
the test automation is played by the plant
model for the transmission and vehicle –
which simulates the physical systems
with the necessary fidelity. Due to the
high degree of automation, the test effort
spent by the development engineers is
significantly reduced, while, at the same
time, the test coverage is significantly in-
creased. The test process can further be
accelerated by running the tests on sev-
eral PCs in parallel.

References
[1]	 G. Korherr, C. Dörr, A. Rink, R. Wörner: Neues

Automatikgetriebe im PKW Hochleistungssegment,
in: VDI Bericht 2029 zum VDI-Kongress Getriebe in
Fahrzeugen, 2008

[2]	 A. Junghanns, J. Mauss, M. Tatar: Testautomati
sierung nach dem Schachspielerprinzip. In: C.
Gühmann (Hrsg.): Simulation und Test in der
Funktions- und Softwareentwicklung für die
Automobilelektronik, Expert Verlag Renningen,
pp. 320 - 331, 2008

[3]	 A. Junghanns, J. Mauss, M. Tatar: TestWeaver –
A Tool for Simulation-based Test of Mechatronic
Designs – In: Proceedings of the 6th International
Modelica Conference, Bielefeld, 3.-4.3.2008

 [4]	 Homepage der Modelica Association, siehe
http://www.modelica.org

Figure 4: The test generator operation method

ATZelektronik 06I2009 Volume 4 27

