

Automated simulation of scenarios to guide the

development of a crosswind stabilization function

Klaus-Dieter Hilf*. Ingo Matheis**

Jakob Mauss**. Jochen Rauh*

*Daimler AG, D-71059 Sindelfingen, Germany (e-mail: {klaus-dieter.hilf, jochen.rauh}@daimler.com).

**QTronic GmbH, AltMoabit 91d, D-10559 Berlin, Germany (e-mail:

{ingo.matheis, jakob.mauss}@qtronic.com)

Abstract: Mercedes-Benz has recently added a crosswind stabilization function to the Active Body

Control (ABC) suspension for the 2009 S-Class. For this purpose the ABC uses the yaw rate, lateral

acceleration, steering angle and velocity sensors of the Electronic Stability Program ESP to vary the

wheel load distribution via the ABC spring struts, depending on the direction and intensity of the

crosswind. This function has to distinguish between vehicle reactions caused by crosswind, by driver

interaction, and by road unevenness. The effects of the crosswinds can be compensated in this way, or

reduced to a minimum in the case of strong gusts. For developing this function Mercedes Benz used the

test case generator TestWeaver to generate thousands of different driving and crosswind scenarios. The

scenarios have been executed using a co-simulation of: (i) a dynamic vehicle model (based on the in-

house tool CASCaDE), (ii) a road and crosswind model implemented in C and (iii) a

MathWorks/Simulink model of the crosswind stabilization function. This simulation-based approach

helped considerably to validate and iteratively improve the safeguarding algorithms of the stabilization

function through all design phases.

Keywords: Rapid Control Prototyping; Systems for Vehicle Dynamics Control; Lanekeeping.

1. INTRODUCTION

Nowadays an increasing number of automotive functions is

realized using software, resulting in a steadily growing

complexity of automotive controllers.

For validation and test of complex controllers, traditional

methods based on hand-written test scripts do not scale well.

Testing the controller in real life by trying to expose the

system under test to all relevant situations is very time

consuming or even not feasible without excessive effort. New

methods and tools supporting a much higher degree of

automation are required here, to meet shorter time-to-market

and high quality demands. In this paper, we present one such

method based on fully automated generation, execution and

validation of useful test cases. We also report how the

corresponding tool, TestWeaver, has been used to validate

and iteratively improve the safeguarding algorithms of the

crosswind stabilization function of the 2009 S-Class. The

paper is structured as follows: in the next section, we describe

our simulation-based validation and test environment.

Section 3 presents the executable model of the system under

test, consisting of the stabilization and safeguard functions,

road, wind and vehicle models. Section 4 describes the

automated test and validation process. We conclude with a

brief assessment of the presented approach.

2. VALIDATION AND TEST ENVIRONMENT

The entire validation and test environment runs on a standard

PC, without any real vehicle hardware in the loop. Section 3

describes how a realistic system simulation model was built.

Such a pure 'virtual' setup can be easily duplicated, e.g. to

parallelize and hence speed-up development within a team.

Another advantage is that, without real vehicle hardware

(such as ECUs) in the loop, there is no real-time requirement

for running the models: Simulation can be suspended at a

specified event to inspect all variables of the simulated

vehicle. Simulation can also be arbitrarily fast, resulting in

increased test throughput. In our case, the simulation runs

about 10 times faster than real time. Thus, in just 3 days of

simulation, about one month of street driving, with a huge

number of differing situations, can be simulated and analyzed

on one PC.

For automated validation (see Fig. 1), the simulation of the

system under test is driven by a sequence of inputs generated

by the test case generator TestWeaver. The inputs control the

road and wind properties, acceleration and brake pedals,

steering, and may also be used to activate dynamically

(simulated) component faults, e.g. of sensors and actuators.

Selected outputs of the simulation (such as car speed, gear

rates, key variables of the controller) are observed by

TestWeaver and stored together with the inputs in a data

base, labeled 'state DB' in Fig. 1.

presented at the 6th IFAC Symposium Advances in Automotive Control, July 12-14, 2010, Munich, Germany

Fig. 1. Setup for simulation-based validation and test.

The test case generation, execution and validation does not

require any user interaction and is interleaved: a new test case

depends on the outcome of all previously generated tests.

TestWeaver generates tests not randomly (this does not help

much), but in a reactive, informed way, trying to worsen

actively scenarios that are already sub-optimal until system

behavior is really bad, i.e. a bug or flaw has been found.

Here, a 'bad' scenario is by definition a scenario where an

output variable reaches a value classified as 'bad' in the test

specification, see below. TestWeaver also attempts to

maximize the coverage of the system state space, i.e. to reach

every reachable state in at least one of the generated

scenarios. As indicated in Fig 1, state space is here the space

spanned by all inputs and outputs that connect the system

under test to TestWeaver. Maximizing state coverage is non-

trivial, because TestWeaver can only control the inputs

directly, not the outputs. For example, TestWeaver cannot set

the speed of the car (an output of the model), but it can learn

that pushing the acceleration pedal (an input of the model) for

a while leads to high vehicle speed. To guide scenario

generation, TestWeaver stores each state reached during

simulation into a state data base, together with the sequence

of inputs that leads into this state. Thereby TestWeaver

successively learns how to control the system under test.

TestWeaver uses this knowledge to drive the system into

states not reached before (to maximize state coverage) and to

worsen scenarios locally by automated variation of those

already generated scenarios that got worst scores.

Technically, an input or output is a model fragment

implemented in C, Simulink, Modelica or Python as part of a

model or sub-model and that connects to TestWeaver using

TCP/IP to either retrieve input values during simulation or

report output values.

For testing a system with TestWeaver no test scripts need to

be specified. Instead, a test or development engineer provides

a very compact test specification with the following

information:

• names of input variables, allowed set of discrete values,

and classification of these input values on a good-bad

scale (to support fault injection)

• names of output variables and classification of output

values on a good-bad scale (to support automated

validation of generated scenarios during execution)

• templates for reporting reached coverage in the state

space and other test results

• general specification data, such as maximal duration of

generated scenarios, upper-bounds for injected faults per

scenario, command used to start the simulation, etc.

TestWeaver reports the test results using HTML. Report

templates use SQL (a standard for data bases) to define the

content of the tables. All scenarios generated by TestWeaver

can be replayed by the test engineer on demand for detailed

investigation and debugging. More details can be found in

(Brückmann et al. 2009), (Gäfvert et al. 2008), (Junghanns et

al. 2008), (Rink et al. 2009).

3. SYSTEM MODEL

This section describes the executable system model used for

automated validation by TestWeaver. Simulation has been

implemented here as a co-simulation of several sub-models

using the co-simulation tool Silver (Rink et al. 2009). In

Silver, a sub-model contains either a numerical solver, or

uses a numerical solver provided by Silver. In both cases, a

Silver sub-model is a DLL (dynamic link library) that

implements a certain API, such as the standard FMI (ITEA 2

2010) or the proprietary Silver module API. For the

application presented here, the modules and their mutual

connections as well as the embedding in the Silver Co-

Simulation are shown in Figure 2.

Fig. 2. Integration of CASCaDE-simulation into TestWeaver.

The CASCaDE vehicle model has been exported as DLL that

implements the Silver API and uses a CASCaDE solver for

numerical integration (shown as vehicle dll). A second sub-

model was created to model crosswind and the road, called

the environment dll in Figure 2. The wind stabilization

function has been developed using MATLAB/Simulink and

was included into the vehicle dll also comprising the

CASCaDE vehicle model. A third sub-model called modifier

dll contains all instruments (inputs u and outputs y in Fig. 1)

used by TestWeaver to control simulated crosswind, road and

vehicle and to observe and assess model behavior.

3.1 Crosswind Stabilization Function

The stabilization function (Keppler et al. 2010) is based on a

disturbance observer which measures the difference between

predicted and actual vehicle behavior. From the calculated

deviation a disturbing moment around the vertical axis of the

inertia system is derived.

Fig. 3. Driving with and without stabilization function.

If the safeguard functions determine that this moment is

caused by crosswind, a path correction is induced by

performing a diagonal wheel load actuation (warp mode)

called Active Body Control crossover with the hydraulic

struts of the ABC suspension. Through the elastokinematic

design of the axle, changes in the toe angles are generated,

resulting in an asymmetric side force. This leads to a steering

reaction of the car compensating the lateral offset induced by

the crosswind. The intervention of the system is scaled to

compensate the disturbing moment up to a designed degree.

For simulation purposes the controller developed in Simulink

was exported using the RealTime Workshop. In the

CASCaDE (Rauh et al. 2008) simulation environment, used

here for vehicle dynamic simulation, the subsystem-interface

was used to couple efficiently the inputs and the outputs of

the control system with the vehicle model.

3.2 Road and Wind Model

The system model also includes configurable road and wind

models. During simulation, TestWeaver controls key control

signals of this model in order to test the system under a great

range of differing road and wind conditions.

The bank angle of the road is modeled as superposition of

two Bezier splines - capturing large and small scale variations

of the bank angle. One such spline is shown, together with its

control points, in Fig 4. Control points are dynamically

generated by TestWeaver in front of the vehicle on demand

during simulation. Similarly, the local road inclination is

modeled by two Bezier splines for large and small scale

variations. Again, control points are dynamically generated

on demand by TestWeaver. The road generated by

TestWeaver is constrained in a way that the acceleration of

the driver does not exceed a certain threshold during driving.

Fig. 4. Bank angle of road modeled using Bezier splines.

Speed and direction of the wind is modeled and controlled in

a similar manner. In addition, the wind model provides a

couple of parameters for varying statistical properties of the

wind, such as shape of and delay between wind gusts.

The road and wind models have been implemented in C and

compiled as a DLL that directly runs in Silver. The dynamic

control of the road and wind model during simulation (as

opposed to using predefined static road and wind profiles)

gives TestWeaver better chances to increase the state

coverage of the total system, including road, wind, vehicle

and controller states: this way TestWeaver can better

synchronize differing road and wind events with differing

states occurring in the controller and vehicle model.

3.3 Vehicle model

The CASCaDE (Rauh et al. 2008) simulation model

describes the vehicle dynamics of a car. All important aspects

like steering, propulsion, braking system and suspension are

modeled in appropriate depth and detail for vehicle dynamics

analysis. A model of the hydraulic suspension system ABC

with a simple representation of the hydraulic lines, valves,

cylinders and the suspension struts is included. The detailing

is adapted to the problems examined here. The original

control software of this active suspension system is also

embedded as exported c-code and linked with the model. The

module receives sensor-information created by the simulation

and outputs the control currents for the valves, thereby

performing the desired wheel-load changes.

The vehicle dynamics behavior and especially the steering

effect based on wheel load variation – the elastokinematic

effect used here for crosswind stabilization – were validated

from measurements. The aerodynamic characteristics were

parameterized from extensive wind tunnel measurements and

validated from bypass measurements at a crosswind test

facility.

The ESP-algorithm is not included in the simulation model.

Since crosswind impact is generally not strong enough to

cause an ESP-intervention in the S-Class, a car featuring a

strong directional stability, the influence of the ESP-system

can be neglected in the study reported here. Only the ESP

sensors used by the stabilization function are represented in

the model. For other investigations the ESP could also be

included.

This simulation model (including the stabilization function

from 3.1) was converted into a dynamic link library (DLL)

with an open interface implementing the communication with

Silver. Driver inputs, current tire patches and wind is fed to

the vehicle simulation. Vehicle and controller states are

reported back to TestWeaver for scenario assessment and

state coverage measurements (see Figure 2).

4. TEST OF THE STABILIZATION FUNCTION

It is not possible to test all possible driving situations in real

life. Disregarding the great effort in time and expenses which

make extended test drives undesirable, even on test tracks,

only a limited number of road profiles is available, so all

possible road excitations can never be covered. Furthermore,

the possibilities to create different wind profiles for real life

testing are very limited. In virtual test drives, however, every

combination of road and wind excitation can be generated.

Therefore, TestWeaver was chosen as a promising approach

to cover the necessary test range with acceptable effort.

The main focus of the investigations was safeguarding

against control impacts due to an erroneous crosswind

detection. Since the observer bases the detection only on

ESP-sensor data, and no direct wind-sensor is implemented,

an asymmetric unevenness of the road, leading to lateral

acceleration and yaw rate, could be interpreted as crosswind.

To avoid the crosswind stabilization to respond to this

excitation, other controller subsystems are designed to

differentiate between vehicle reactions due to crosswind and

reactions due to driver- and street-interaction or sensor faults.

The first focus was on trying to provoke the crosswind

stabilization function to perform steering impacts due to

driver and street interaction, thus detecting holes in the

safeguarding mechanisms. Since basic features of

safeguarding rules implemented were specified, and already

sufficiently tested, the range of feasible driving- and

environment situations in which the function had to be tested

in this approach could be restricted to situations not already

reliably and adequately covered. Thus scenarios not

respecting these well-known limits set by the safeguarding

mechanisms, for instance, on steering wheel angle or

velocity, were not investigated and excluded in advance from

the situations possibly chosen by TestWeaver. By taking into

account this beforehand knowledge the design range

TestWeaver had to cover to guarantee the reliability of the

system was reduced to the regions not verified so far,

allowing TestWeaver to work more efficiently.

Finding categories of suited street excitations was an iterative

approach. Too high excitations were easily detected by the

safeguard mechanisms implemented so far. Too small

excitation did not lead to a relevant wind force estimation

and, thus, to no reaction of the system. After choosing a

promising range from evaluating the TestWeaver results,

TestWeaver found several categories of impacts which the

controller was not safeguarded against.

The mechanism included at the examined design stage only

used the difference in spring travel between left and right

wheel with the standard sensors being available in the ABC

suspension system. The failure scenarios found with

TestWeaver showed that a certain type of street unevenness

did not lead to a high enough difference in spring travel.

Reducing the critical limit of difference spring travel allowed

was not an appropriate solution - this would reduce the

percentage of time the system is active. The relevant

scenarios were nonetheless marked by a high individual

spring travel. From this observation a new safeguarding

module was added, combining individual and difference

spring travel.

After this element was included in the controller, a re-run of

the critical scenarios showed that the unevenness was now

detected. New runs with TestWeaver proved that the

protection against false crosswind recognition was complete.

The proportion of time the system was active was not

reduced. Thus, this new criterion was implemented and

approved in the test runs.

In a second approach TestWeaver was additionally used to

create sensor faults of different classes: sudden offsets or

linear drifts on the different sensor signals used by the

observer and the safeguarding mechanism. Here TestWeaver

was used during the design phase of the detection module

inside the controller. Current versions were immediately

exported, linked with the vehicle system simulation and

tested with TestWeaver. The effectiveness of new measures

or chosen limits was investigated before a first version was

tested in the vehicle.

5. CONCLUSION

We reported how a closed-loop vehicle simulation in

combination with the test case generator TestWeaver has

been used to support and guide the development of a

crosswind stabilization function. The validation reported has

been conducted by a single engineer (a novice TestWeaver

user at that time) within about three weeks. In that time,

about 100.000 different driving scenarios, each 45 sec. long,

have been generated, executed and validated. The setup has

been changed and extended during the investigation to

explore also the effect of sensor faults. The coverage

achieved this way would have been hard, if not impossible, to

achieve with comparable effort using a less automated

approach, e. g. based on hand-written test scripts, driving a

real car on the road, or using the Daimler crosswind test

facility.

To summarize, the presented approach seems extremely well

suited for the validation of complex automotive controllers

during all stages of development. The main benefit is in the

high test coverage that can be achieved with low work effort

for engineers, based on a compact high-level specification of

the validation task.

REFERENCES

Brückmann, H. et al. (2009). Model-based development of a

dual-clutch transmission using rapid prototyping and

SiL. In International VDI Congress Transmissions in

Vehicles 2009, Friedrichshafen, Germany.

Gäfvert, M. et al. (2008). Simulation-based automated

verification of safety-critical chassis-control systems. In

Proceedings of AVEC ’08, Kobe, Japan.

ITEA 2 (2010). Functional mock-up interface for model

exchange 1.0, Specification, released 26.01.2010.

 http://www.functional-mockup-interface.org

Junghanns, A., Mauss, J. and Tatar, M. (2008). TestWeaver -

a tool for simulation-based test of mechatronic designs.

In 6th International Modelica Conference, pp. 341 –

348, Bielefeld, Germany.

Keppler, D., Rau, M., Ammon, D. et. al. (2010). Realisierung

einer Seitenwind-Assistenzfunktion für Pkw. In AAET –

Automatisierungssysteme, Assistenzsysteme und

eingebettete Systeme für Transportmittel, Braunschweig,

Germany (in German).

Rauh, J. and Mössner-Beigel, M. (2008). Tyre simulation

challenges. Vehicle System Dynamics, volume 46,

supplement 1, pp. 49-62.

Rink, A., Chrisofakis, E., Tatar, M. (2009). Automatisierter

Test für Softwaremodule. ATZelektronik, volume 6, pp.

36-40. (in German).

 English: http://www.qtronic.de/doc/ATZe_2009_en.pdf

	Close Article

