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Abstract
Calibration of engine controllers can greatly benefit from mathematical optimization. 
This  requires  however  an executable  model  of  the ECU functions.  The following 
problem arises: Engine calibration is typically performed by an OEM, while the ECU 
code is owned by the supplier of the ECU. Therefore, the OEM is typically unable to 
set up an ECU simulation based on the original C code of the ECU. Instead, to set up 
optimization on PC, time consuming and error prone reverse engineering is needed 
to develop an 'equivalent model' of the ECU function of interest. To deal with this 
situation,  we  have implemented a novel  method for  automating the calibration of 
engine parameters. The method combines two ideas

• simulation of ECU program code on PC using chip simulation
• mathematical optimization based on the resulting executable model  

The simulation requires only the hex, ASAP2/a2l and map file, that an OEM typically 
has access to, but not the source code of the ECU functions of interest. 
This  paper  describes  also  a  problem  that  we  encountered  when  coupling  chip 
simulation  with  optimization  methods  that  require  gradients  to  guide  search  for 
optima: partial derivatives of engine functions with respect to engine parameters are 
zero or infinite then, due to integer data types used by typical engine control code. As 
a result, gradient based optimization methods lack guidance and tend to terminate 
with  sub-optimal  solutions.  The paper  also  sketches ideas how to  overcome this 
problem and presents results of numerical experiments.

1. Simulation of ECUs on PC

Simulation  has  great  potential  to  improve  the  development  process  for  ECUs. 
Simulation  helps  to  move  development  tasks  to  PC,  where  they  often  can  be 
performed faster, cheaper or better in some respect [7]. To exploit these benefits, the 
ECU must first be ported to PC. This is typically done based on the C code of the 
ECU,  which  is  either  hand coded,  or  generated by tools  such as Ascet  (ETAS), 
TargetLink  (dSPACE)  or  Embedded  Coder  (MathWorks).  For  example,  QTronic's 
virtual ECU tool Silver [1] provides a framework to 

• compile given ECU tasks for Windows PC,
• emulate the underlying RTOS and other services (CAN, XCP),
• run the resulting virtual ECU closed-loop with a simulated vehicle. 

Typical applications are [2, 6], where a virtual ECU is used to develop the controller 
for  an automatic transmission. For closed-loop simulation, vehicle models can be 
imported from many simulation tools into Silver, including MATLAB/Simulink, Dymola, 
SimulationX and MapleSim, e.g. through the FMI format for model exchange [4].
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However, sometimes C code is not available for implementing a virtual ECU. There 
are two main sources for such a situation:

• Protection of intellectual property: All  or major parts of the ECU have been 
developed by a supplier and the OEM interested in building a virtual ECU (e.g. 
to support calibration, a task typically performed by an OEM) has therefore no 
access to the C code.

• Target-specific C code: C code is available but the C code uses pragmas and 
other  target  or  compiler  specific  constructs,  which  prevents  compilation for 
other targets, such as the Windows x86 platform.

To deal with such situations, we have recently integrated a chip simulator into the 
virtual ECU tool Silver. This way,  a virtual ECU can be build based on a hex file  
compiled for the target processor of the ECU. No access to C code is needed in this  
case. Instead of compiling C code for the Windows x86 platform, the chip simulator 
takes the binary compiled for the target processor and simulates the execution of the 
instructions by the target processor on Windows PC. Such a simulation requires
1. a hex file that contains program code and parameters of the simulated functions
2. start addresses of the functions to be simulated
3. an  ASAP2/a2l  file  that  defines  the  conversion  rules  for  the  involved  inputs,

outputs, and characteristics, as well as corresponding addresses
The start addresses of functions can e. g. be extracted from a map file generated 
together  with  the hex file.  Silver  uses the a2l  file to  automatically convert  scaled 
integer  values  to  physical  values  and  vice  versa  during  simulation.  Such  a  chip 
simulation  model  can  also  be  exported  as  SFunction  (mexw32  file)  for  use  in 
MATLAB/Simulink. On a standard PC, hex simulation runs with about 40 MIPS. If 
only simulating selected functions of an ECU, this is fast enough to run a simulation 
much faster than real-time.

The paper is structured as follows: Section 2 describes how to use chip simulation to 
build and run a virtual ECU on PC. In section 3, we report how the resulting ECU 
model has been coupled with numerical optimization to automate engine calibration.

2. Chip simulation for TriCore targets

Many automotive controllers are based on processors of Infineon's TriCore family, in 
particular in the power train domain. Examples are engine controllers of the MED and 
EDC family by Bosch and transmission controllers by Continental. Since the initial  
release  of  TriCore  AUDO (AUtomotive  UnifieD-ProcessOr)  in  1999,  Infineon  has 
released four updates of the TriCore architecture, named AUDO NG (e.g. TC1796), 
AUDO Future (e.g. TC1797), AUDO MAX (e.g. TC1798), and AURIX. All members of 
the TriCore family are based on the same instruction set. Individual chips differ in 
memory  maps,  kind  of  memory,  on-chip  devices,  such  as  CAN controllers,  and 
interfaces to external devices. This section describes the support for TriCore chip 
simulation as provided by Silver 2.5.

2.1 Turning a hex file into a virtual ECU

The software of an ECU consists of a real-time operating system (RTOS) that runs 
functions (tasks) at specified times, either initially, periodically or at certain events, 
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such as angle positions reached by the crankshaft.  Three kinds of  tasks can be 
distinguished

1. tasks that generate signals, e.g. by reading sensors or CAN messages
2. tasks that compute output signals from input signals
3. tasks that use signals to command actuators or to create CAN messages

The tasks of categories 1 and 3 typically depend on details of the particular chip  
(such as hundreds of registers of on-chip devices), and on the ECU hardware. In 
contrast,  tasks  of  category  2  are  fairly  independent  from such  hardware-specific 
details. To simulate ECU code, it is therefore convenient to run only tasks of category 
2. The required inputs for these tasks can either be taken from measurement files 
(open-loop simulation), or they are computed online by some plant model (closed-
loop simulation), bypassing the tasks of category 1. Likewise, the outputs of category 
2 tasks can be directly compared to measurements (open loop) or fed into the plant 
model (closed loop), bypassing the category 3 tasks. The signal interface between 
categories 1-2 and 2-3 is typically well documented and available, e.g. from the CAN 
specification (DBC file) of the ECU.

This modelling strategy has a very good cost-benefit ratio. In order to simulate also 
the tasks of categories 1 and 3, one has to model hundreds or peripheral and chip  
specific registers, and to build state-machine models for low-level peripherals, such 
as CAN controllers. Technically, this is possible, e. g. with SystemC [5], but hardly  
justified by the added value, at least for the application considered here.

Silver 2.5 uses a specification file (similar to the OIL file used to configure OSEK) to 
specify, which tasks of a hex file to simulate. Silver automatically turns such a spec 
file into an executable Silver module (dll) or SFunction. A typical spec file looks as 
follows:

01 # specification of sfunction or Silver module 
02 hex_file(m12345.hex, TriCore_1.3.1)
03 a2l_file(m12345.a2l)
04 map_file(m12345.map)      # a TASKING or GNU map file
05 frame_file(frame.s)       # assembler code to emulate RTOS
06 frame_set(STEP_SIZE, 10)  # Silver step size in ms
07 frame_set(TEXT_START, 0xa0000000) # location of frame code
08 
09 # functions to be simulated, in order of execution 
10 task_initial(ABCDE_ini)
11 task_initial(ABCDE_inisyn)
12 task_triggered(ABCDE_syn, trigger_ABCDE_syn)
13 task_periodic(ABCDE_20ms, 20, 0)
14 task_periodic(ABCDE_200ms, 200, 0)
15 
16 # interface of the generated sfunction or Silver module
17 a2l_function_inputs(ABCDE)
18 a2l_function_outputs(ABCDE)
19 a2l_function_parameters_defined(ABCDE)
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The hash # character starts a comment, which is ignored by Silver. The spec file first 
lists the required files (line 2-5). The map file is optional. If a map file is given, the 
spec file may use symbolic names for functions (such as ABCDE_20ms). Otherwise, 
addresses  (such  as  0x80081cde)  must  be  used.  File  frame.s  (line  5)  contains 
startup code and the generic part of the RTOS emulation used to run the tasks. As 
usual, the startup code sets up stacks, registers, timer and other resources.

Lines 10 - 14 lists the functions to run, and specifies when and in which order to run 
these functions. Silver uses this to generate the application-specific part of the RTOS 
emulation. For event triggered tasks, Silver offers two alternative event models. Line 
12 shows a function that is executed n times at each Silver step, where n is the value 
of the input variable trigger_ABCDE_syn at the beginning of the step. Typically, n 
is 0 or 1 during simulation. Higher values occur only,  when more than one trigger 
event occurs during one step. Silver also offers a more accurate event model, that  
allows  execution  of  an  event  triggered  task  at  exact  event  time,  not  just  at  the  
beginning of a step.

Finally,  lines  17-19  define  the  inputs,  outputs  and  parameters  of  the  generated 
module  or  SFunction.  In  this  case,  we  just  reuse  the  interface  of  a  FUNCTION 
element  of  the  a2l  file,  for  a  function  called  ABCDE.  It  is  also  possible,  to  list 
individual  variables here  by name,  as long as their  properties (such as address, 
conversion rule, data type) are described in the a2l file. 

In addition, the spec file offers means to specify
• properties  of  the  XCP emulation,  if  any,  to  support  online  calibration  and 

measurement using tools such as INCA and CANape
• data sections to be included into the generated Silver module or SFunction. 

This way, initial loading of the hex file into simulated memory can be avoided, 
to speed up simulation.

• memory areas to be copied to other (faster) memory by the start-up code
• functions to be replaced by other functions. This way, a function called by a 

task of category 1 or 3 to access sensors or actuators can be replaced by a 
function that directly accesses a plant model or measured values instead.

• logging options, e.g. to track memory access during simulation

The  Silver  module  or  SFunction  generated  this  way  performs  exactly  the  same 
computations  on  PC,  as  on  the  real  target,  since  the  effect  of  every  machine 
instruction on memory and chip registers is exactly simulated on PC. However:

• simulation is  just  instruction accurate,  not  cycle  accurate.  This  means,  the 
simulation on PC cannot be used to exactly predict execution time on the real 
target. For example, pipeline effects of different access times to memory (e.g. 
fast on-chip RAM vs. external RAM) are not modelled.

• conceptually,  simulated  tasks  execute  infinitely  fast.  This  means  that  the 
emulated RTOS never interrupts a task. The corresponding effects cannot be 
analysed using the generated model.

• Silicon bugs are not simulated. If a compiler for the real target does not work 
around a silicon bug correctly,  this is likely to be invisible in the simulation: 
simulated  behaviour  and behaviour  on  the  real  target  might  differ  in  such 
cases.
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2.2 Debugging the virtual ECU

The spec file used to port selected parts of a hex file to PC might contain bugs. To 
locate bugs, Silver integrates a debugger based on the instruction set simulator tsim, 
developed  by  Infineon.  This  debugger  is  used  whenever  a  simulation  does  not 
perform as expected, i.e. differs from measured behaviour. Silver can be switched to 
step mode. In this mode, Silver uses tsim to run just one TriCore instruction per step, 
allowing  a  user  to  inspect  register  content  before  and  after  execution  of  an 
instruction. It is also possible to set code and data breakpoints, for example to pause 
a simulation whenever a certain variable is accessed.

Fig 1: The BGLWM function running in Silver, driven by measurement file

2.3 Execution times

In  order  to  measure  the  execution  speed  of  chip  simulation,  we  have  ported  a 
complex ECU function implemented by 5 different C functions that run initially, every 
10 and 200 ms, and synchronous to the crankshaft. The spec file is very similar to  
the one shown in section 2.1. The function has 114 scalar inputs, 102 scalar outputs 
and 108 parameters (characteristics), many of them axes and maps. We have then 
measured all inputs and outputs of the function on an engine test rig for a scenario of 
3.5 minutes and used the resulting measurement (mdf/dat) file to drive simulations in 
Silver,  using either  tsim or  a  generated Silver  module.  Each simulation executed 
380.205256 million instructions (counted by tsim) and has been repeated 5 times on 
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a  Windows PC with  Intel  i5  processor  at  2.4  GHz and  2.92  GB RAM.  Average 
execution times found this way are shown in Table 1. 

simulator execution time on PC MIPS
Infineon tsim 919.15 sec   0.41   
Silver module 9.30 sec   40.80   
Table 1: Performance of chip simulation for the BGLWM example

The  ECU  considered  here  (MED17  with  TC1797)  runs  at  200  MHz  and  has  a 
performance of about 300 MIPS. Nevertheless, on the ECU, the execution time for  
the  3.5  minutes  scenario  is  of  course  exactly  3.5  minutes,  due  to  the  real  time 
constraint. On a PC, this function runs 20 times faster.

2.4 Exporting a simulation to MATLAB/Simulink

Silver can also turn a spec file as described in section 2.1 into a SFunction, i.e. a 
mexw32 file that runs in Simulink. This is particularly interesting when using chip 
simulation  to  support  automated  optimization  of  parameters,  because  many 
optimization  tools  are  implemented  on  top  of  MATLAB/Simulink.  The  generated 
SFunction accepts all characteristics listed in the spec file as SFunction parameters. 
This  makes  it  easy  to  connect  the  generated  SFunction  with  an  optimization 
procedure. For example, the SFunction can be called with workspace variables that 
are then automatically varied by the optimization procedure between SFunction calls. 
The performance of a generated SFunction is again about 40 MIPS.

3. Application to the numerical optimization of engine parameters

We  have  combined  chip  simulation  as  described  above  with  a  procedure  for 
numerical  optimization  to  compute  optimal  values  for  certain  engine  parameters. 
These computations require an accurate and fast model of the engine function of 
interest. In the past, we have used hand-coded models of ECU functions, developed 
with MATLAB/Simulink. This has been time consuming and error prone. We have 
now  partially  replaced  these  hand-coded  models  with  SFunctions  generated 
automatically by Silver from a given hex file. The generated SFunctions proved to run 
as fast as their hand coded counterparts. The replacement of hand-coded floating-
point  models  by  generated  fixed-point  SFunctions  raises  the  following  problem: 
Some optimization procedures require gradient information to guide the search for 
optimal parameter values: When searching for an x that minimizes f(x), the derivative 
df/dx is to be computed during optimization for different values of x. Finite differences 
are often used here: df/dx is computed as (f(x + h) - f(x)) / h for small h, say h = 10-6. 
If f is computed using chip simulation, x and x+h are often both mapped to the same 
integer, resulting in a zero gradient. As a consequence, the optimization procedure is 
lacking guidance, and might return a suboptimal solution. 
This  section  presents  ideas  how to  overcome this  problem and  some results  of 
numerical  experiments.  There  are  also  so-called  derivative-free  procedures  for 
optimization.  Obviously,  these  are  not  affected  by  the  above  problem.  This  is 
exploited in [8]. 
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3.1 Least squares optimization

Optimization in engine development can frequently be formulated as least-squares 
optimization. The objective is then to minimize a goal function

g  x=∑
i=1

m

f i
2 x

(1)

where x is a vector of n real valued parameters. A typical application is curve fitting. 
The engine controller contains a function model(x, t) that estimates a physical quantity 
that the controller cannot measure directly.  This model needs to be calibrated by 
choosing parameters x such that a measured series of m data points is predicted by 
the model as good as possible, i.e. the squared sum of the m real-valued residuals

f i x=modelx , t i−measurementti  (2)

gets  minimized.  In  typical  applications,  there  are  hundreds  of  data  points  and 
parameters. 

Algorithms  typically  used  for  least-squares  optimization  approximate  for  different 
choices of x the Jacobian 

J i , j  x=lim
h  0

f i s x , j ,h− f i x
h

sk  x , j ,h=if  j=k thenxkhelse xk

(3)

to determine at a given point x in parameter space the direction of steepest descent 
of g(x). Each element of the above Jacobi matrix is typically approximated by a finite 
difference

Di , j x=
f i s x , j ,h− f i x

h
(4)

with sufficiently small h, say h = 10 -6.

3.2 A problem with chip simulation

Engine  controllers  are  frequently  implemented  using  fixed-point  code,  i.e.  all  
computations  are  performed  using  integers,  not  floating  point  numbers.  As  a 
consequence, when implementing the goal function  g (or just the residuals  f) using 
chip simulation, the elements of the Jacobi matrix (3) are either zero or undefined 
(infinite). This is illustrated in Fig. 2. for a certain engine control function.

Figures 2a to h show how goal function g(x) depends on two selected parameters x1 

and  x2.  In  cases  a,  c,  e, g,  the goal  function is implemented in Simulink using a 
reverse-engineered model of the engine controller. In cases b, d, f, h, chip simulation 
has been used to implement g(x) based on the original controller code. When ranges 
for  x1 and  x2 are chosen large enough (a and  e),  both implementations look fairly 
similar. At smaller scales, the goal function computed by chip simulation turns into a 
increasingly rugged landscape (d and h), while the Simulink model stays smooth at 
all scales (c and g).
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a) Simulink model b) Chip simulation: same scale as a)

c) Simulink model: scale up d) Chip simulation: same scale as c)

e) Simulink model, around the optimum f) Chip simulation, same scale as e)

g) Simulink model, optimum scaled up h) Chip simulation, same scale as g)
Fig 2: Goal function varied for two parameters x1 and x2
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In general, when optimizing goal functions implemented using chip simulation with 
solvers that compute derivatives to guide the search, these solvers typically return 
early with a sub-optimal solution, since finite differences computed with (4) are nearly 
always zero and do not provide guiding information. Solvers tend to conclude, that 
they reached an optimum (since all derivatives are zero), and return a suboptimal  
solution. 

3.3 Ideas for solving the problem

The main idea to overcome the above problem is to  smoothen the discrete goal 
function and to pass the resulting smooth function to the solver used for optimization. 

To construct such a smooth goal function, one might consider to replace the integer 
operations used by the chip simulator by the corresponding floating point operations. 
This does not work however, because it would either indifferently turn all arithmetic 
operations into floating point operations (even those that need to remain discrete, 
such as array index computations), or would require to distinguish these two cases 
for each operation in program code, which is impractical.

A mathematical  rigorous idea is  to  explicitly  construct  a  smooth goal  function by 
interpolating the grid  points  of  the discrete goal  function  g,  and to  determine the 
corresponding derivatives analytically.  However,  g(x) is a function of  n parameters. 
Each  point  x in  n-dimensional  parameter  space  has 2n neighbouring  grid  points. 
Linear interpolation of a function value requires hence to compute a sum of 2n terms. 
This seems infeasible, since n is about 100 here. 

Instead, we replace in (4) the fixed step size h by the term k Hi,j(x), which is sensitive 
to the grid size at point x

Di , j x=
f i s x , j , k H i , j x− f i  x

k H i , j x
(5)

Hi,j(x) is the discretisation grid size defined as follows: 
Hi,j(x) = max - min, where max is the maximal and min is the minimal real number such 
that h ≥ min ∧ h ≤ max ⇒ fi(s(x, j, h)) = fi(x).

Fig 3: Discretisation grid size Hi,j(x) for residual function fi and parameter xj

The use of Hi,j(x) in (5) to compute a finite difference leads to non-zero differences in 
many cases. This provides guiding information for optimization, since it  takes the 
function value beyond the next grid point into account. The discrete residual functions 
fi are however subject to chaotic integer up and down rounding, which causes the 
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rugged landscape seen in  Fig.  2d and  h.  The constant  factor  k is  introduced to 
compensate this. For example, choosing k = 10 averages the derivatives across 10 
grid points, which reduces the noise generated by integer rounding. 

For given x, each element of the matrix H(x) can be computed by searching for the 
lower (min) and upper (max) grid point, e.g. using a binary search procedure. This is 
computational expensive. For the application reported here, the following simplifying 
assumption lead to good results: the matrix  H does not change significantly during 
the optimization process, i.e. H(x0) ≈ H(xOptim), where x0 is the given start value for 
optimisation, and xOptim is an optimal solution. It is sufficient then to compute H for 
the start  vector  x0 only,  not  for  every intermediate point  x considered during the 
optimisation process.

To avoid  the  expensive  computation  of  all  elements  of  H,  one might  also use a 
stochastic model of H as follows: for each of of the n parameters xj, compute Hi,j(x) 
for  just  a  few,  not  all  m time  points  ti,  and  derive  mean  value  µj and  standard 
deviation  σj of  the  discretisation  grid  size  from  that.  During  the  entire  solution 
process, the constant step width 

h j=k  j3 j (6)

is then used in (4) to compute finite differences for parameter xj, where k ≥ 1 is again 
a smoothing factor to average across more than just one grid point.

3.4 Numerical results for a engine control function

Many optimization procedures that use derivatives provide also options to control the 
step size of finite differences. Such options are required in order to apply the ideas 
presented in 3.3. For the experiments reported here, we have used  lsqnonlin from 
the MATLAB optimization toolbox. Procedure  lsqnonlin provides options to control 
the step size  h, either globally (option  DiffMinChange), or with individual lower limit 
for each of the  n parameters (option  FinDiffRelStep).  Alternatively,  a user defined 
procedure  for  computing  the  Jacobian matrix  can be provided (option  Jacobian), 
which might then use its own step sizes. In all three cases, either the matrix H in (5), 
or  the  stochastic  model  (6)  of  H can  be  used  to  control  the  step  size  of  finite 
differences. 

We validated the ideas presented in 3.3 using a curve fitting problem of an engine 
control function with  n = 20 parameters and m = 202 time points. The goal function 
has been implemented using chip simulation and - for reference - also using a hand 
coded Simulink model. The goal function implemented by chip simulation and passed 
to  lsqnonlin with  option  FinDiffRelStep  in  combination  with  step  size  limits  (6) 
generated solutions of roughly the same optimality and number of required function 
evaluations  as  the  reference  set  up  based  on  the  hand-coded  Simulink  model. 
Optimization  using  chip  simulation  took  however  a  factor  2  longer,  due  to  the 
additional initial computation of step size limits (6) from the given start value x0. 
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One  interesting  point  is  cross-comparison  of  found  solutions:  The  hand  coded 
Simulink model generated a solution xOptSimulink with 

gSimulink(xOptSimulink) = 0.0148
while  optimisation  with  chip  simulation  generated  a  slightly  different  solution 
xOptChipsim with

gChipsim(xOptChipsim) = 0.0149
Cross-comparison shows that both goal functions define slightly different optima:

gSimulink(xOptChipsim) = 0.0200
gChipsim(xOptSimulink) = 0.0217

The goal function gChipsim is however a bit accurate model of the computation of the 
real engine controller, while gSimulink is a hand-coded model with a certain modeling 
error. We therefore believe that on the real engine controller, the solution found by 
chip simulation performs effectively better (0.0149) than the one found by the hand-
coded Simulink model (0.0217).

4. Conclusions

As demonstrated above, an ECU hex file compiled for some target processor can be 
executed by the virtual ECU tool Silver on Windows PC, either open-loop driven by 
measurements or in closed-loop with a vehicle model. Depending on the application,  
selected ECU functions are simulated, or nearly the entire ECU. As shown in section 
3, such chip simulations can be coupled with optimisation procedures.

This kind of simulation opens new possibilities to move development tasks from road, 
test rig or HiL to PCs, where they can be processed faster, cheaper or better in some 
respect, without requiring access to the underlying C code. Daimler currently uses 
this innovative simulation approach to support controls development for gasoline and 
diesel engines, see also [8]. Other applications, such as online calibration on PC via 
XCP seem to be doable as well.
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