
10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

Module Test in System Context

Tjark Kiefer, Ingo Matheis

Abstract

Module tests are well proven methods to assure software quality. But with raising
complexity of the code this method is not without its problems. Assume having a
module with 20 inputs, each having 5 values to be stimulated. So you would have to
define 5 to the power of 20 (=95,367,431,640,625) tests. Considering that in real life
modules use counters and thresholds, the numbers get even worse. Thus the costs
for maintaining and defining module tests especially for complex modules limit its
use.

Regarding the V-Model by Barry Boehm the module test is followed by the integra-
tion test. During the development of the new 9G-Tronic by Daimler a SiL was built
containing all functional code and including a fully automated build process. Because
it was so easy to use the design engineers tested any changes using the SiL. Thus
the integration test was done before the module test.

From that context the idea was born to derive the module test from the integration
test. The mock objects needed to run the module test could be generated automatic-
ally from the integration test of the SiL. This method was used to test modules with
high complexity (40-100 inputs, including analog sensor values) and it turned out that
the effort to define and maintain such tests was very low. The module test in system
context was well accepted.

1. Motivation
The development of the 9G-Tronic came with lots of challenges. The time given was
3.5 years which corresponds to 7 software development cycles, the developers were
short of prototypes and since the 9G-Tronic replaces the 7G-Tronic there was little
time between the production launch and producing high quantities.
Thus the key for making the control software reliable was to make its development
highly efficient.

1.1 The Development Process
At Daimler there are two development cycles (aka VA-cycles) a year. While the V-
part is following the V-Model by Barry Boehm, the A-part is about tuning the para-
meters such that the car performs best. In the following we restrict to the V-cycle.

1

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

Diagram 1: The V-Model

From the function developer’s point of view this process is:

- Specify your function,
- wait until it is implemented by the software engineers,
- flash the test software to the HiL or car, test it and
- report the test result.

This process turned out to be a bottleneck.
- Each loop takes its time because at least two engineers are involved until you

can test.
- The specification of the design engineer is often misinterpreted by the soft-

ware engineer. Thus adding more loops.
- Every idea the design engineer develops causes an interrupt in his workflow

because every time he has to wait until the software engineer provides new
software. This causes him to change context all day and therefore making him
work ineffectively.

1.2 Pre-testing with the SiL
The SiL is a co-simulation environment that contains the complete function code, a
plant model simulating the hardware, providing interfaces for actuators and sensors,
a rest bus simulation and a virtual cockpit so you can do virtual test drives.

The SiL comes with a full featured build environment. All function software is in-
cluded and any model change by the design engineer can be imported to the SiL by
just a click of a button. The build process itself is completely automated and replaces
the integration engineer.

Furthermore the co-simulation tries to emulate the target ECU: It provides connec-
tions for XCP and CAN so that you can connect with your standard measurement
and calibration tool like CANape or INCA. Thus the engineers can reuse their tool

2

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

chain from the car and use it with the SiL. And because in the virtual world there is
no bandwidth limitation of the CAN, you can measure tens of thousands of measure-
ments at once.

If a design engineer wants to test his idea, he changes the model, pushes a button
and within minutes he gets the SiL with his modifications, ready for an integration
test. After testing intensively he can decide for the best option and formulate the one
specification for the software engineer.

Because the SiL pre-testing is easily done software defects can be found as early as
possible. Note that both the design engineer and the software engineer benefit from
the SiL.

2. The Module Test
While the integration test evaluates the system behavior, especially how the modules
of the system interact with each other, the module test focusses on a modules intern-
al logic. For the sake of software quality both levels of detail must be covered.

In theory modules should be small and have less than 10 inputs and outputs. The
more complex modules are well structured and highly modular from the inside. And
the modules are easy to understand, well documented and some parts can even be
reused.

In practice modules are rarely developed from scratch. For some years you add
functions, fix bugs and refine if statements of state machines. To improve the trans-
mission in terms of

- fuel economy,
- fast and comfortable shifting,
- driver and environment dependent shifting strategy and
- safety and durability

existing modules are reused and extended. Add some time pressure to this process
and your modules most likely will become more complex than they should be.

We made a little statistics on the code for the 9G-Tronic:
- More than 100 modules with a total of 5000 inputs are used.
- About 20 modules have at least 50 inputs.
- About 5% of the inputs are continuous signals like revolutions per minute,

torque or speed.
- Most of the 20 modules with 50 inputs have high complexity, using counters

and thresholds.

The problem to do module testing for complex modules can be described as follows:
- The more complexity, the higher the costs defining a module test.
- The more complexity, the more module tests are needed.
- Time and money are limited resources.

Therefore: Module tests scale badly with the complexity of a module: Costs are high
for creating and maintaining the tests. And using more human resources does not
solve the problem.

3

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

3. Module Test in System Context
The challenge is to set up module testing for complex modules such that

- the costs implementing a test is independent of the complexity of the module,
- the test is backward compatible to classic module testing and
- the test is robust in terms of interface changes of the module.

This is the co-simulation that is used for the integration test.

Diagram 2: The co-simulation

The ECU comes from the build process that automatically integrates all modules and
emulates the XCP- and CAN-communication. The plant model is created by Dymola
simulating the hardware of the transmission. The virtual cockpit offers buttons and
sliders to interact with the virtual car. All is integrated using the co-simulation bus.

The diagram above is equivalent to the following one.

Diagram 3: The co-simulation from a different point of view

4

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

What has changed is the representation of the control software of the ECU. If we
isolate one module then the rest of the control software becomes an adapter
between the module X and the co-simulation bus. Since we already have solved the
problem how to integrate all modules, the adapter comes for free.

After automatically determining the inputs of module X we add an appropriate bypass
control panel to the cockpit of the SiL. Thus the SiL becomes the module test in sys-
tem context.

Diagram 4: The Module Test in System Context

If you record the outputs of the virtual cockpit and the bypass control panel you can
replay any stimulus. Thus you can record the stimulus by simply driving the virtual
car and using the bypass control panel at the right point of time.

The requirements mentioned above hold true:
- The costs to implement the module test are independent of the complexity of

the module because most of the time you use the virtual cockpit as input and
the bypass control panel that is automatically generated.

- The module test in system context is compatible with the classic module test.
From the very beginning of the simulation use the bypasses only to stimulate
the module. In this case, all other modules still are executed, but they are out
of the test loop.

- If the interface of module X changes most of the stimulus recorded will still
work since the adapter automatically changes too. One can construct counter
example for this, but in practice they turned out to be rare.

The remaining part is to evaluate the module behavior. To do so we use so-called
watchers. They have the following properties:

- Watchers are assigned to one or more stimulus.
- Watchers have a Boolean expression to determine when the evaluation starts.

In the case of classic module testing this would be checking the time.

5

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

- Watchers have a Boolean expression to determine if the test succeeded. For
this check you can define a tolerance time in which the test has to succeed or
you can define that the success state has to stay true for some time.

- You can concatenate watchers to a list of watchers.
In practice defining watchers takes from less than a minute (simple check) up to five
minutes (concatenated watchers with complex Boolean expressions). Again the re-
quirements mentioned above are still valid.

During the test the code coverage is measured using the CTC-tool by Testwell. After
your tests finished you get a report visualizing which lines of the c-code have been
executed and which still miss. From this analysis you gain knowledge how to in-
crease the code coverage and how the next stimulus has to be defined.

4. Conclusion and Results
This method has been applied to the 9G-Tronic development for a set of very com-
plex modules having up to 100 inputs. This work was delegated to a test engineer
who created test stimulus using the documentation of the control software. After one
week of testing a code coverage of about 70% could be achieved and the tests were
presented to the design engineer in charge. After discussing some details and one
more week of testing the code coverage raised to about 90%. The module test in
system context was well accepted because the handling was easy and fast.

For very simple modules the classic module test was better to use since all you have
to do is fill up a spread-sheet with inputs and outputs. But with raising complexity the
module test in system context was much more efficient in terms of test depth and
time costs.

This last point still could be solved because the module test in system context is
backward compatible to the classic module test. Using the spread-sheet with inputs
and outputs one could generate everything needed to run the same test as a module
test in system context.

6

10th Symposium on Automotive Powertrain Control Systems, 11. - 12. September 2014, Berlin

The Authors

M.Sc. Tjark Kiefer
Daimler AG
Strategy and Coordination – Competence-Center Powertrain
(Strategie und Koordination – Kompetenzcenter Triebstrang)
Stuttgart

Dr. rer. nat. Dipl.-Math. Ingo Matheis
QTronic GmbH
Simulation and Emulation of Control Devices of the Drivetrain
(Simulation und Emulation von Steuergeräten im Bereich Antriebsstrang)
Stuttgart

7

